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Introduction

Recently, several new architectural patterns for internet applications have emerged.
Among them, the microservice pattern promotes greater distribution by breaking down large
monolithic applications into smaller, independent components. This approach is chosen at design
time, with stakeholders intentionally structuring their systems around microservices to enhance
reliability and performance. Most applications adopt a single architectural style—monolithic,
microservice-based, or a hybrid—rather than opting to support both styles simultaneously. Very

limited research exists on the effects of choosing one style or another on raw performance.

To evaluate the practical differences between monolithic and microservice architectures,
we developed an internet application designed specifically to compare their performance,
reliability, and other key metrics in a controlled setting. Recreating the popular mobile video
game “Flappy Bird” in a client-server environment, we implemented a custom system for
abstracting internal communications away into a special, swappable layer. This decision allows
different parts of the application to communicate via direct function calls (in monolithic
deployments) or gRPC (in microservice deployments). Nearly all other components of the
application remain identical between deployment styles, minimizing external variables. We
present our methodology and findings in the direct impacts on performance between architectural

styles. Our repository is located at https://github.com/vuv418/cs553project and a video demo is

available at https://drive.google.com/file/d/1Drgi6SiY9dhrnf5P8 sevmEN-hUAA9ZQ/view.

Methodology

There are two key components to our project: the implementation of Flappy Bird and the

deployment/measurement collection system. We will detail both these components below.


https://github.com/yuv418/cs553project
https://drive.google.com/file/d/1Drgi6SjY9dhrnf5P8_sevmEN-hUAA9ZQ/view

Flappy Bird Implementation

Our Flappy Bird implementation is split into two parts: the backend and frontend. We will

discuss the backend first.

Backend

The backend is composed of sub-components, each representing a distinct microservice. These
include authentication, a game initiator, the game engine, music streaming, and a scoreboard.
Initially, our project plan involved streaming frame data to the client. However, we determined
this approach was too complex to implement within our timeframe. Instead, we simplified the
scope by sending raw position data directly. The complexity stemmed from the need to stream
frame data efficiently, which would have required sophisticated compression methods or

WebRTC-based video streaming.
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Figure 1: The initial application architecture, with frame generation still included

Although we define microservice boundaries based on these components, the monolith

implementation combines them into a single binary. Each component—whether operating as a



microservice or as part of the monolith—can expose a WebTransport endpoint for client

communication and support gRPC-based RPCs.

Each component provides handler functions for its RPCs. These functions accept a request
context (for metadata) and the gRPC request structure and return either a corresponding response
structure or an error. This consistent interface allows microservices to process requests
independently while enabling the monolith to call these handlers directly, bypassing the overhead

of full RPC communication.

We use generics in our gRPC server to invoke handler functions from shared boilerplate code.
For each backend component, we maintain a dictionary that maps the component name to its
metadata, such as the URL for microservice communication (used only in the distributed model).
Another dictionary maps each RPC to its corresponding component and handler function. During
setup, we enter a boilerplate code to register each endpoint route. This code handles
authentication (if enabled), extracts metadata like the username, deserializes the incoming
Protocol Buffer request, invokes the handler, and serializes the response back into Protocol

Buffer format.
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Figure 2: Example of abstraction layer in action

For WebTransport, we use similar abstractions. There simply needs to be a generic handler
function to handle when data is received over WebTransport and a handler function to handle the
first WebTransport connect (to save the writer to send data over WebTransport). Both these
WebTransport handler functions take some additional request context. There are no RPCs to a
WebTransport endpoint, so no dictionaries are required. We simply provide a function to register
a WebTransport at some path with two handler functions, which configures a separate HTTP/3
server to handle WebTransport. Again, this does authentication verification, then forwards input
to the input handler function, and send the transport writer to a separate registration handler

function.

This abstraction layer is powerful. For each component, we have a function that registers the

relevant RPCs and WebTransport endpoint (if applicable), called



Setup<Component>Handler. Now, we can use Go’s “tags” feature to conditionally

compile a specific binary for a monolith/microservice with specific component setup handlers. It

is then trivial to call the various component handler setup functions for the appropriate

ctx *abstraction.AbstractionServer) {

dler(ctx)

import abstraction "github.

func SetupHandlers{ctx action.Abstr

Figure 4: The monolith setup
microservice, or register all the components for the monolith.

This abstraction layer was a key component to help us quickly test both a monolith and
microservices at the same time. Updating the monolith and microservice simply involved core
logic in these handler functions and rebuilding with the appropriate tags. While building the
abstraction layer took significant time and effort, it provided serious gains in iteration and testing

time afterwards.



The core logic of each component was easy to implement. We will briefly outline some of the

functionality and some of the challenges we faced in this section.

Authentication: Supplied with the appropriate keys, we use signed JWTs for authentication.
This eliminates the need for every component to send a request to the authentication component,

lowering latency.

Initiator: This sends a request to the world generator and forwards this generated world to the

game engine to tell the engine to start the game.

World Generator: This component randomly generates a fixed number of pipes (set to 100 for
now) with various gap sizes and a randomly generated fixed spacing. This component was a bit
complex, since we had to carefully generate these values to make sure games are playable. For
instance, if the gap between two pipes is too small for the bird, the game won't work. Similarly,
we also found that if the bird is physically unable to flap up to a gap or fall to a gap from its
current position (e.g., the bird clears a pipe at the top of the screen and then must immediately
clear a pipe at the very bottom of the screen),. To mitigate the first problem, we made sure that
the pipe generator never starts a pipe in the lower 5 of the screen, and depending on where the
pipe is initially generated, the generator will ensure that the gap is appropriately sized (e.g., a
pipe gap starting towards the bottom of the screen is smaller, so the height of the gap is a larger
proportion of the distance between the gap start and the bottom of the screen). To resolve the
second issue of pipes with gaps at opposite ends of the screen, we make sure if a pipe gap is at
the top of the screen, the next pipe gap is either at the top or the center. Similarly, if a pipe gap is
at the bottom of the screen, the next pipe gap is either at the bottom or center. A pipe in the

center means the next pipe can be anywhere.



Game Engine: This handles inputs to move the bird and runs a loop that constantly sends sprite
positions to the client (e.g., pipe positions visible in the current frame and the bird position) at a
rate of 30 FPS. The hardest part of this was taking the set of 100 generated pipe positions from
the world generator and finding which pipes to tell the client to show within the viewport and

where to put them (the pipes should slide smoothly as the game progresses).

Figure 5: The initial engine state

Based on the viewport width (to calculate the max pipes to render on screen) and the left edge of
the red rectangle, called the pipe X position, we can calculate what pipes to render by finding the

closest pipes to the pipe X position and the difference between the X position and the closest

pipe.

Figure 6: We will send the left pipe in a negative position, making it invisible on the canvas.



Music: Exposes an RPC to play music over the WebTransport writer. The input tells the music
component what sound it should play (e.g., flapping, death sound, point sound). This component

embeds Ogg Vorbis audio data as byte arrays and transmits it via WebTransport for playback.

Scoreboard: This takes a game run (with score) and updates a JSON file that serves as a
database mapping users to a list of all their game runs containing score and game ID. It also
exposes the list of all previous user scores, along with a global leaderboard that uses a max heap

to find the highest scores efficiently.

Michael implemented the authentication logic and original boilerplate for the gRPC server.

Ramesh built the abstraction and all other components.

Frontend

Our frontend/client is written in TypeScript. It uses the Connect gRPC client to interface with
endpoints for each component specified by environment variables. For our monolith, the
endpoints would all point to the same host and port. Endpoints for the microservices vary
depending on the microservice in question. The client implements authentication and stores the
JWT token sent in localStorage to avoid having to log in every time. Upon login, the client waits
for the space key to be pressed, at which point it sends a gRPC request to the initiator to start the
game (generating the world and forwarding it to the engine with a game ID) and starts up the
WebTransports for both the music and game engine after the initiator finishes. The game engine
is programmed to not actually start bird movement after. The game, which includes bird
movement, does not begin until the client opens the WebTransport. This prevents the issue where
the initiator starts the game but the client fails to receive frame updates for a while, resulting in

the bird falling without any inputs and dying immediately.



The client uses vector graphics—namely SVGs—for rendering. The DOM renders these, and
during frame updates, it modifies various CSS properties to position sprites accordingly. The

music uses JavaScript’s AudioContexts feature to play byte streams.

Michael created most of the client, implementing everything except the music WebTransport.

Ramesh implemented the music for WebTransport and playback.

Measurement and Deployment

There are four parts to this stage of our project: instrumentation, deployment, collection, and

evaluation.

Instrumentation

We first decided on what instrumentation to perform in our project.

Client:

- Authentication latency (how long does it take to log in)?

- Initiator latency (how long does it take to initiate the game)?

- Score

- Frame receive timestamps (for calculating jitter — see how far off the frames are)
- Music receive timestamps

- Input timestamps (for calculating time between input and audio received, and time

between input and next frame)

It is worth elaborating slightly on the metrics we wanted to collect with the input send and

10

frame/music receive timestamps. Essentially, it’s difficult to measure any sort of round-trip time

for data in WebTransport because any sort of WebTransport statistics that come from the
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underlying QUIC layer are not exposed in any WebTransport library. Therefore, our goal was to
determine the jitter for the frames, which should be around 1000/30 milliseconds. We can also
measure the time between an input coming in and music playing, as every input will have a
resulting flap sound. Note that this time will include the time it takes for the game engine to send
a music request to the music component, but it is still an intriguing metric. We will explain

input-to-frame time in the collection section.

Server: Any RPC request is timed and logged, along with the source component and destination

component.

For the client, we time all measurements using JavaScript’s Performance API.

Instrumentation is generally straightforward for one-time measurements, such as initiator latency
or authentication latency. For the frame and music receive timestamps, we simply use an array in
memory and add a timestamp to the array every time music or a frame is received or input is
being handled. This certainly adds overhead, but in our empirical testing, this overhead was not
significant enough to affect the playability of the game. Our automated data collection revealed
that the instrumentation's added delay did not significantly impact gameplay. When the player
loses the game, a CSV file containing the direction (receive/send), the location
(frame/music/input), and the timestamp is downloaded to the user’s computer. The intrusive

latency logging can be disabled with an environment variable.

For the server, we used Go’s time library for measurements. We tried to minimize

instrumentation overhead by using a separate thread (goroutine, which is a green thread, as Go
does not support kernel threading directly). Our goal is to minimize file I/O latency during any

requests that occur between components. The separate thread receives metrics over a channel and



12

writes them to a file. If the program terminates, the file writer flushes every write to maintain

consistency in the CSV.

Bala implemented the JS frame, music, world generation, input timestamp aggregation, and
CSV download. Ramesh implemented the one-shot measurements for initiator/auth latency.

Ramesh implemented most of the server instrumentation, with Bala helping out.

Deployment

Michael created the deployment code for FlappyGo! Using Terraform and its AWS provider to
orchestrate the FlappyGo! deployments provided a reliable foundation for managing complex
infrastructure scenarios. The modular, parameterized design of our Terraform configuration
allowed us to switch easily between deployment modes—monolith and microservices—and
across patterns such as single instance and multi-availability zone. Multi-region support was
integrated into a separate Terraform setup due to complications arising from Terraform’s
provider system. The deployment process featured built-in mechanisms for secure access and
communication. The script handled TLS certificate provisioning via either user-supplied files or
self-signed generation using local-exec provisioners, and SSH keys could be either generated or
reused based on availability. Terraform resources were configured to incorporate these securely
across EC2 instances, enabling encrypted channels and authenticated access without manual
intervention. This setup ensured that services deployed in different configurations maintained

consistent security postures.

Dynamic generation of terraform.tfvars through the deploy script simplified parameter
management across environments. This approach minimized human error and enabled quick The

The script transitions between test configurations by centralizing key variables, including The
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deployment mode, AWS region, and instance type are important parameters. The flexibility of
the script complemented Terraform’s declarative model, reducing the effort needed to spin up

fresh infrastructure for each experimental run greatly.

Microservices deployments leveraged Terraform to instantiate each service independently, with
gRPC and WebTransport interfaces provisioned on distinct EC2 instances. Inter-service
dependencies were configured post-deployment using remote-exec provisioners, which edited
systemd unit files on the instances to inject the correct service URLs. While effective, this
approach was sensitive to delays in instance readiness and added operational fragility. Ensuring

proper sequencing and connectivity between instances required careful coordination.

Terraform provided essential structure and control over FlappyGo! deployment, supporting
modular, secure, and repeatable experiments. One significant drawback encountered was
Terraform’s slow deploy cycle. Modest configuration changes often required full infrastructure
The reapplication process led to long delays during testing and iteration. Such delays slowed
development feedback loops and made experimentation more time-consuming than anticipated.
While multi-region support required manual intervention and deploy times presented workflow
challenges, the overall system enabled reliable testing of architectural performance tradeoffs
between monoliths and microservices. We were able to easily test several distinct deployment
patterns using this deployment system: monolithic (one system), microservice-based (one
system), microservices deployed across multiple Amazon Web Services availability zones within
one region, and micro services deployed across multiple Amazon Web Services regions
(distributed globally). These findings provided us with critical data about how the application

behaved in very distinct deployment scenarios.
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Collection

Our goal with collection is to make it as painless as possible, a la Ousterhout. We have succeeded
in this. After automating microservice and monolith deployment, we set out to automate playing
the actual Flappy Bird game to avoid playing it over and over again manually when collecting
data. We decided to either write a bot to play the game for us or code to record the timing of a

human playing Flappy Bird and simulate these inputs. We chose the latter to reduce complexity.

The second reason we chose to simulate inputs is for consistency. Having consistent runs, where
the inputs are sent at the same time, is beneficial. With inputs being sent at the same time across
multiple runs, they are no longer variables. With the inputs standardized, we are able to measure
the input-to-next-frame time. This metric, along with the input-to-music time, can be used to

characterize responsiveness to some degree.

To execute the automated collection, we initially need a "standard game." We accomplished our
goal by permitting the user to designate a fixed world generator seed, ensuring the identical
world is produced with each execution. We conducted experiments with various seeds to identify
two difficulty levels: one designed for brief play, characterized as easy with fewer "tight" inputs,

and another featuring tighter inputs, classified as a harder level.

With these games fixed, we wrote a keylogger program to dump the timestamp in CSV format to
standard output every time the space (flap) key is pressed. This program targets a Linux desktop

and pulls data from 1ibinput, the input system for Linux. This program was originally written

in Python but had performance issues and inaccuracies, so we rewrote it in Rust.

To record a game, we open the game in the web browser, log in, then start the keylogger and

redirect its standard output to a file. We then play the game as normal, and when finished, we
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Terminate the keylogger. The CSV traces are stored in

client-automation/input_seeds.

To simulate a game, we use a Python script that invokes Selenium with ChromeDriver, a browser
automation framework. Selenium clears localStorage and logs in (to test auth latency), starts the
game, and sends inputs to the game at the correct offsets. Between the first space pressed and the

actual game loading, there is a delay caused by the initiator. The input traces do not account for

this.

initiator complete

start game v flap

input input

initiator complete

start game v flap

N ——
X1 Y

input input

Figure 7: Initiator delay

In our traces, we only have x + y. Call this quantity z. We want to wait for the initiator to be
complete, then wait for y milliseconds, as the initiator may wildly vary in its completion

time—depicted in the second regime of the figure. This issue squarely depends on deployment.
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To resolve this, we experimentally determined x, as we had not saved our initiator latency when
taking the input trace. Then, the input simulator waits for the initiator to complete (we do this in
Selenium repeatedly checked a global variable in the client’s JavaScript and waited for the value

of z minus x (where x is experimentally determined) after the initiator was complete.

The input simulator downloads the latency values in the client to a specified directory after the
game is over, which is detected by searching for a change in DOM elements after each space is

sent. This check did not seem to affect the simulation’s accuracy.

With a completed deployment on Terraform, Terraform can expose JSON configuration
information about the various microservice endpoints. Using this configuration, we wrote a shell
script. This script first restarts all services to clear out server logs. Then, it SSHes into the world
generator and fixes a seed. The script then runs the Selenium input simulator five times and
saves statistics. In case the input simulator fails for some reason (such as Chrome crashing) or
the first input is not recognized, the script retries this run until it is able to get a valid result. The
script does this by checking if the score outputted by the input simulator is greater than zero.
Automation has greatly benefited from this error checking, particularly in more distributed
microservices where the game starts with unreliable inputs. This script is run with the two
aforementioned seeds. At the end, we fetch all remote server logs, and everything is saved to a

common directory for data processing.

In the end, we have two commands: the deploy.sh script to deploy FlappyGo on AWS with
Terraform and this script. These two scripts used in succession automatically collect all logs and

simulate tests, which is very convenient for testing.
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Michael worked on the remote log fetching script. Ramesh worked on automating game

playback and the data collection script.

Evaluation

Bala generated all the graphs, averages, and visualization code. This was done in Matplotlib.

We generated various plots and split our plots by the “hard” and “easy” seeds to be able to
compare these two games separately. We combine all five runs across each seed in one plot. Data
local to a single run (like differences in frame receive times) are computed for just that run and
combined later. To save space, we won't show the hard-level graphs, but we will discuss

some intriguing results.

Server logs are an aggregate of all 10 runs. Failed runs are included in these server logs.

For the client logs, the top two graphs represent the time difference between successive audio or
frame arrivals. Frame position data arrivals are expected every 33.3 milliseconds (the engine
runs at 30 FPS), while audio data arrives after an input, after score increases, or after the game is

over. The bottom two graphs indicate input-to-audio time and input-to-frame time, respectively.
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Microservices
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Audio Latency vs Time Frame Latency vs Time
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First of all, audio is input-dependent and level-dependent because it comes in with every input
and every time the score increases. This is why we have split our graphs by each world, which

has the same seed and automated input.

Monolith: Frame jitter is nearly exactly centered at 33.3 ms (at 30 FPS, anticipate data arrival
every 33.3 ms). Although there are minor variances, the majority of frames remain within 10
milliseconds of 33.3 ms. Regarding input-to-audio and input-to-frame, we anticipate that the
subsequent frame from an input will be no more than 33.3 ms away (assuming the input is
activated immediately thereafter). Most inputs appear to be within 30 milliseconds of the actual
answer. Nonetheless, the initial inputs require a considerable amount of time to elicit a response.
The delay is likely due to our initial input occurring prior to the commencement of the game; this
interval encompasses the initiator and WebTransport connections. This will apply to all

subsequent deployments.

Microservices Single-AZ: Since the services are split but nearby, we should expect similar
results, but slightly worse. All services were deployed within a singular Amazon Web Services
availability zone, comprising one or more closely situated data centers. Requests have to go

through networking equipment in the data center, which may slightly increase latency. We do not
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anticipate that the latency will not increase significantly because data center-grade networks are
typically highly performant. Indeed, this appears to be the case, with slightly looser ranges in
frame jitter and more frames being off the 33.3 ms “clock rate.” It’s worth noting that the
input-to-audio time is now squarely above 20 ms, while in the monolith many more points were
below the 20 ms mark. The data from Run 5 of the input-to-frame graph appeared to be more

volatile. So we see 1-2 ms more latency and a little more volatility.

Microservices Multi-AZ.:

Multi-Region: This is clearly the worst performance. We can see from the graphs that while the
frame jitter is still acceptable, the arrival time of the last frame will clearly be much higher, from
the outliers that take over 200 milliseconds to arrive! Compared to the Multi-AZ deployment, the
time delay between frames can easily exceed 50 milliseconds. From an empirical perspective, the
multi-region game feels the worst to play. This frame jitter graph shows that it is mostly smooth
but has stutters. We also observed that audio comes in very late after an input. This observation is
confirmed by the input-to-audio graph. Every input seems to take upwards of 100 ms to get an
output—that’s significantly higher than the worst latency of multi-AZ, which is a little less than
30 ms. In fact, no audio comes in faster than 70 ms. This slowdown is caused by the latency of
sending an RPC from the game engine to a music service in a different region (EU-West to
EU-Central). It’s also fascinating to note how the initial space-press in input-to-frame is much
higher because of the initiator performing RPCs across multiple regions. Again, we see latency

spikes in the input-to-frame.
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Figure 8: The locations of the various microservices in our multi-region testing

Audio jitter: It’s fascinating to see how, as the services get further and further apart, the “audio
jitter” (time between audio being received) gets more variable. Looking at the multi-region
instance, this seems quite evident, where each run varies more and more compared to previous
runs. This effect is also visible, but to a lesser extent, in the Multi-AZ runs. Single-AZ and
Monolith have less of this. Comparing individual data points, the first three runs seem to exhibit
similar latencies, while multi-region performs noticeably worse in every data point. The second
audio jitter point is well above 1400 ms, while in all previous deployments they are around 1400

ms. This highlights how multi-region performs visibly more poorly than other deployments.

We anticipated that as input latency increases, the bird’s inputs might not register promptly in the
"difficult game" and the "easy game," potentially leading to a game over before reaching the
expected score. For the easy game, the expected score was 7, and for the difficult game the

expected score was 31. All deployment configurations reached the expected score except for the
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multi-region deployment, which failed once and received a score of 1; additionally, in the
difficult runs, this same deployment failed once more and achieved a score of 22. This is
significant because scores of 15 and 22 in the difficult game were considered "tight" inputs,
which supports our hypothesis. We might need an even worse latency between the client and

game server to have systematic failures here.

If there is any takeaway from these metrics, it is that latency may not significantly get worse
from one point to another point, but tail latency gets worse and random spikes occur.
Additionally, interactions that require multiple hops across different regions (e.g., music RPC

calls) worsen as microservices move further apart.

Server Graphs
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Average Latency by Service (monolith_single_instance_collected_20250509_055048_combined)
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Average Latency by Service (microservices_single_instance_collected_20250509_045622_combined)
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Note: “single instance” in this context refers to deployment within a single Amazon Web Services availability zone (AZ).

Multi AZ
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Average Latency by Service (microservices_multi_az_collected_20250509_051656_combined)
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Average Latency by Service (microservices_multi_region_collected_20250509_174939_combined)
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First of all, we must pay close attention to the y-axes. It is easier to interpret the graphs by

understanding the scale.

Monolith: 350000 ns = 0.35 ms (hundredths of milliseconds); Single AZ: 10° ns is 1 ms, in
milliseconds. Multi AZ: same scale; multi-region: hundreds of milliseconds. This jump in
latency is on a scale of 10x, as the time scale multiplies by ten when going from a monolith to
microservices deployed in multiple machines in one region (milliseconds) and 100x from one
region to microservices deployed in multiple regions (hundreds of ms). It clearly shows the

decomposition of a monolith to microservice architecture is not always optimal.

Initially, the world generator experiences spikes due to the seed changing every 5 runs. The
world generator creates a new random number generator and sets a seed exactly once when it
first generates a world; hence this latency. This is also the reason there is a latency spike at the
beginning of the world generator. However, every service has a latency spike at the beginning.

This is potentially because gRPC clients seem to open persistent connections, so it is possible the
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The first gRPC call takes additional time because it must actually establish a connection with the

microservice first, which it reuses later on.

Another intriguing question is the regular latency spikes in the music service. This likely occurs
because the score sound is twice the size of the flap sound, and the Protobuf serialization process

copies the audio data, which likely increases latency.’

We shall now clarify certain irregularities in the average latencies. The multi-region code seems
to be significantly influenced by regional closeness. The initiator invokes the game engine and
environment generator, which subsequently calls both the music service and the score service. At
present, all of these RPCs are The RPC linking the game engine to the music service is the sole
one positioned near the others, while all other RPCs are distanced from one another. This is why
the music RPC has a much lower average latency than other RPCs. For the in-the-monolith
architecture, we observe that the game engine RPCs (from initiator to game) exhibit significantly
lower latency compared to other types of Remote Procedure Calls (RPCs). The reason for this is
that the StartGame RPC requires minimal computational resources. It locks a dictionary, does a
few arithmetic operations in O(1) time, inserts an item into the dictionary, and finishes. This
figure is in comparison to the score, music, and world generator, which perform file I/O, network
I/O, and repeated random number generations, respectively. Therefore, the average engine
latency for other services is likely a representation of round-trip time. Since all non-monolith
services are running across different machines, we contend that the game engine's average
latency being higher than other RPCs indicates that the machine is physically further away, even

if in the same AZ or region.
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Other than this, many of the results we see are straightforward. The time scale increases as

services get progressively further apart and latency gets progressively worse.

Future Work

We took many more measurements than this (e.g., client-side RPC latencies to auth and
initiator), but didn’t get to plot these graphs. You can see how these measurements are expressed
in our sample video. We could also try to correlate statistics by game ID to get per-game data.
Additionally, we may want to experiment with performance results related to redundancy and
load balancing (using an orchestration system like Kubernetes) or when multiple users are
playing simultaneously. It would also be intriguing to add additional microservices or induce a
chain of RPCs to see how this affects latency. We would like to explore the performance of

network schedulers in mitigating the latencies by scheduling multiple flows (frame in this case)

References

Large Language Models were used occasionally for troubleshooting. Transcripts of these chat

conversations were included directly in the codebase where their input was considered.

https://developer.hashicorp.com/terraform/docs

https://vite.dev/guide/

https://grpc.io/docs/

https://protobuf.dev/overview/

https://docs.aws.amazon.com/ec2/

https://docs.aws.amazon.com/vpc/



30

https://jqlang.org/manual/

https://matplotlib.org/stable/index.html

https://developer.mozilla.org/en-US/docs/Web/API/WebTransport

https://stackoverflow.com/questions/26388405/chrome-disable-ssl-checking-for-sites

https://stackoverflow.com/questions/47274254/how-do-i-run-terraform-init-from-a-different-fold

€r

https://stackoverflow.com/questions/47130406/extending-global-types-e-g-window-inside-a-type

script-module

https://stackoverflow.com/questions/56431721/why-go-get-u-takes-a-very-long-time-inside-a-m

odule-directory-but-complete-qui

https://stackoverflow.com/questions/57556909/ssl-alert-number-46-alert-certificate-unknown-ho

w-to-ignore-this-exceptions

https://stackoverflow.com/questions/57556909/ssl-alert-number-46-alert-certificate-unknown-ho

w-to-ignore-this-exceptions

Backend

https://gobyexample.com/channels

https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson

https://pkg.go.dev/os#File.Write

https://pkg.go.dev/encoding/json



31

https://bitfieldconsulting.com/posts/map-iteration

https://stackoverflow.com/questions/21950244/is-there-a-way-to-iterate-over-a-range-of-integers

https://stackoverflow.com/questions/57278822/sending-grpc-communications-over-a-specific-po

rt

https://gist.github.com/marzocchi/c4d3e2254853¢c5{f02b420044e796aea

https://sahansera.dev/building-grpc-client-go/

https://pkg.go.dev/google.golang.org/grpc#ClientConn.Invoke

https://www.freecodecamp.org/news/new-vs-make-functions-in-go/

https://chatgpt.com/share/680de978-f87c-8012-bd76-a8a6ae618438

https://pkg.go.dev/github.com/golang-jwt/jwt/vS#example-Parse-Hmac

https://github.com/dgrijalva/jwt-go/blob/master/hmac example test.go

https://pkg.go.dev/connectrpc.com/connect#NewUnaryHandler

https://gist.github.com/filewalkwithme/0199060b2cb5bbc4 78¢5

https://stackoverflow.com/questions/69573113/how-can-i-instantiate-a-non-nil-pointer-of-type-ar

gument-with-generic-go/69575720#69575720

https://pkg.go.dev/bufio#Writer.Flush

https://stackoverflow.com/questions/15407719/in-gos-http-package-how-do-i-get-the-query-strin

g-on-a-post-request



32

https://pkg.go.dev/io#ByteScanner

https://pkg.go.dev/net/http#Header

https://www.reddit.com/r/golang/comments/cgbkel/why are headers mapstringstring/

https://pkg.go.dev/strings

https://go.dev/doc/tutorial/handle-errors

https://stackoverflow.com/questions/71114401/grpc-how-to-pass-value-from-interceptor-to-servi

ce-function

https://chatgpt.com/share/6810f51b-79b8-8012-8ec9-4d526dd1c434

https://connectrpc.com/docs/go/errors/

https://gobyexample.com/timers

https://stackoverflow.com/questions/16466320/is-there-a-way-to-do-repetitive-tasks-at-intervals

https://stackoverflow.com/questions/29721449/how-can-i-print-to-stderr-in-go-without-using-log

https://gobyexample.com/timers

https://stackoverflow.com/questions/16466320/is-there-a-way-to-do-repetitive-tasks-at-intervals

https://pkg.go.dev/math/rand

https://stackoverflow.com/questions/3574716/date-and-time-type-for-use-with-protobuf

http://api.acme.com or https://acme.com/grpc).

Client Automation



33

https://www.geeksforgeeks.org/how-do-i-pass-options-to-the-selenium-chrome-driver-using-pyth

on/

https://stackoverflow.com/questions/5137497/find-the-current-directory-and-files-directory

https://stackoverflow.com/questions/5664808/difference-between-webdriver-get-and-webdriver-

navigate

https://selentum-python.readthedocs.io/locating-elements.html

https://selentum-python.readthedocs.io/navigating.html

https://stackoverflow.com/questions/32098110/selenium-webdriver-java-need-to-send-space-key

press-to-the-website-as-whol

https://stackoverflow.com/questions/46361494/how-to-get-the-localstorage-with-python-and-sele

nium-webdriver

https://stackoverflow.com/questions/26566799/wait-until-page-is-loaded-with-selenium-webdriv

er-for-python

https://stackoverflow.com/questions/14257373/how-to-skip-the-headers-when-processing-a-csv-f

ile-using-python

https://smithay.github.io/smithay/smithay/backend/libinput/struct.LibinputInputBackend.html

https://stackoverflow.com/questions/62501219/how-to-send-keys-to-a-canvas-element-for-longer

-duration

https://stackoverflow.com/questions/1133857/how-accurate-is-pythons-time-sleep



34

https://www.geeksforgeeks.org/python-strftime-function/

https://stackoverflow.com/questions/71716460/how-to-change-download-directory-location-path

-in-selenium-using-chrome

https://stackoverflow.com/questions/54571696/how-to-hard-refresh-using-selenium/54571878#5

4571878

https://stackoverflow.com/questions/59130200/selenium-wait-until-element-is-present-visible-an

d-interactable

https://stackoverflow.com/questions/62501219/how-to-send-keys-to-a-canvas-element-for-longer

-duration

https://github.com/Smithay/input.rs

https://stackoverflow.com/questions/4412238/what-is-the-cleanest-way-to-ssh-and-run-multiple-

commands-in-bash

https://stackoverflow.com/questions/49110/how-do-i-write-a-for-loop-in-bash

https://serverfault.com/questions/7503/how-to-determine-if-a-bash-variable-is-empty

Paper

https://pke.go.dev/google.golang.org/erpc/keepalive#ServerParameters



https://pkg.go.dev/google.golang.org/grpc/keepalive?utm_source=godoc#ServerParameters

